Pii: S0306-4522(99)00273-0

نویسنده

  • A. BOLDYREV
چکیده

The role of carnosine, N-acetylcarnosine and homocarnosine as scavengers of reactive oxygen species and protectors against neuronal cell death secondary to excitotoxic concentrations of kainate and N-methyl-d-aspartate was studied using acutely dissociated cerebellar granule cell neurons and flow cytometry. We find that carnosine, N-acetylcarnosine and homocarnosine at physiological concentrations are all potent in suppressing fluorescence of 2 0,7 0-dichlorofluorescein, which reacts with intracellularly generated reactive oxygen species. However, only carnosine in the same concentration range was effective in preventing apoptotic neuronal cell death, studied using a combination of the DNA binding dye, propidium iodide, and a fluorescent derivative of the phosphatidylserine-binding dye, Annexin-V. Our results indicate that carnosine and related compounds are effective scavengers of reactive oxygen species generated by activation of ionotropic glutamate receptors, but that this action does not prevent excitotoxic cell death. Some other process which is sensitive to carnosine but not the related compounds is a critical factor in cell death. These observations indicate that at least in this system reactive oxygen species generation is not a major contributor to excitotoxic neuronal cell death. q 1999 IBRO. Published by Elsevier Science Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0306-4522(99)00292-4

An essential role for caspases in programmed neuronal cell death has been demonstrated in various in vitro studies, and synthetic caspase inhibitors have recently been shown to prevent neuronal cell loss in animal models of focal cerebral ischemia and traumatic brain injury, respectively. The therapeutic utility of caspase inhibitors, however, will depend on preservation of both structural and ...

متن کامل

Pii: S0306-4522(99)00150-5

The amplitude of excitatory postsynaptic potentials and currents increases with membrane potential hyperpolarization. This has been attributed to an increase in the driving force when the membrane potential deviates from the equilibrium potential of the respective ions.17 Here we report that in a subset of neocortical and hippocampal synapses, postsynaptic hyperpolarization affects traditional ...

متن کامل

Pii: S0306-4522(99)00381-4

Glutamate is the principal excitatory neurotransmitter in the mammalian brain. Several lines of evidence suggest that glutamatergic hypoactivity exists in the Alzheimer’s disease brain, where it may contribute to both brain amyloid burden and cognitive dysfunction. Although metabotropic glutamate receptors have been shown to alter cleavage of the amyloid precursor protein, little attention has ...

متن کامل

Pii: S0306-4522(99)00296-1

Transgenic mice overexpressing brain-derived neurotrophic factor from the b-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999